8)
On
the number table, x2 + xy + y2 is elliptical in shape,
slanted at a 45° angle
On the
number table, x2 + xy + y2 is elliptical in shape,
slanted at a 45°
angle. This was alluded to previously
when the twelve different integer derivations of the solution 19 formed an
elliptical shape on the number table. It
can also be shown on the number table by assigning different shades of colors
based on their values.
-10
|
-9
|
-8
|
-7
|
-6
|
-5
|
-4
|
-3
|
-2
|
-1
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
||
10
|
100
|
91
|
84
|
79
|
76
|
75
|
76
|
79
|
84
|
91
|
100
|
111
|
124
|
139
|
156
|
175
|
196
|
219
|
244
|
271
|
300
|
10
|
9
|
91
|
81
|
73
|
67
|
63
|
61
|
61
|
63
|
67
|
73
|
81
|
91
|
103
|
117
|
133
|
151
|
171
|
193
|
217
|
243
|
271
|
9
|
8
|
84
|
73
|
64
|
57
|
52
|
49
|
48
|
49
|
52
|
57
|
64
|
73
|
84
|
97
|
112
|
129
|
148
|
169
|
192
|
217
|
244
|
8
|
7
|
79
|
67
|
57
|
49
|
43
|
39
|
37
|
37
|
39
|
43
|
49
|
57
|
67
|
79
|
93
|
109
|
127
|
147
|
169
|
193
|
219
|
7
|
6
|
76
|
63
|
52
|
43
|
36
|
31
|
28
|
27
|
28
|
31
|
36
|
43
|
52
|
63
|
76
|
91
|
108
|
127
|
148
|
171
|
196
|
6
|
5
|
75
|
61
|
49
|
39
|
31
|
25
|
21
|
19
|
19
|
21
|
25
|
31
|
39
|
49
|
61
|
75
|
91
|
109
|
129
|
151
|
175
|
5
|
4
|
76
|
61
|
48
|
37
|
28
|
21
|
16
|
13
|
12
|
13
|
16
|
21
|
28
|
37
|
48
|
61
|
76
|
93
|
112
|
133
|
156
|
4
|
3
|
79
|
63
|
49
|
37
|
27
|
19
|
13
|
9
|
7
|
7
|
9
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
97
|
117
|
139
|
3
|
2
|
84
|
67
|
52
|
39
|
28
|
19
|
12
|
7
|
4
|
3
|
4
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
103
|
124
|
2
|
1
|
91
|
73
|
57
|
43
|
31
|
21
|
13
|
7
|
3
|
1
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
111
|
1
|
0
|
100
|
81
|
64
|
49
|
36
|
25
|
16
|
9
|
4
|
1
|
0
|
1
|
4
|
9
|
16
|
25
|
36
|
49
|
64
|
81
|
100
|
0
|
-1
|
111
|
91
|
73
|
57
|
43
|
31
|
21
|
13
|
7
|
3
|
1
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
-1
|
-2
|
124
|
103
|
84
|
67
|
52
|
39
|
28
|
19
|
12
|
7
|
4
|
3
|
4
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
-2
|
-3
|
139
|
117
|
97
|
79
|
63
|
49
|
37
|
27
|
19
|
13
|
9
|
7
|
7
|
9
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
-3
|
-4
|
156
|
133
|
112
|
93
|
76
|
61
|
48
|
37
|
28
|
21
|
16
|
13
|
12
|
13
|
16
|
21
|
28
|
37
|
48
|
61
|
76
|
-4
|
-5
|
175
|
151
|
129
|
109
|
91
|
75
|
61
|
49
|
39
|
31
|
25
|
21
|
19
|
19
|
21
|
25
|
31
|
39
|
49
|
61
|
75
|
-5
|
-6
|
196
|
171
|
148
|
127
|
108
|
91
|
76
|
63
|
52
|
43
|
36
|
31
|
28
|
27
|
28
|
31
|
36
|
43
|
52
|
63
|
76
|
-6
|
-7
|
219
|
193
|
169
|
147
|
127
|
109
|
93
|
79
|
67
|
57
|
49
|
43
|
39
|
37
|
37
|
39
|
43
|
49
|
57
|
67
|
79
|
-7
|
-8
|
244
|
217
|
192
|
169
|
148
|
129
|
112
|
97
|
84
|
73
|
64
|
57
|
52
|
49
|
48
|
49
|
52
|
57
|
64
|
73
|
84
|
-8
|
-9
|
271
|
243
|
217
|
193
|
171
|
151
|
133
|
117
|
103
|
91
|
81
|
73
|
67
|
63
|
61
|
61
|
63
|
67
|
73
|
81
|
91
|
-9
|
-10
|
300
|
271
|
244
|
219
|
196
|
175
|
156
|
139
|
124
|
111
|
100
|
91
|
84
|
79
|
76
|
75
|
76
|
79
|
84
|
91
|
100
|
-10
|
-10
|
-9
|
-8
|
-7
|
-6
|
-5
|
-4
|
-3
|
-2
|
-1
|
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
Also, substituting
x = p – q and y = p + q, we get x2 + xy + y2 = (p – q)2
+ (p – q)(p + q) + (p + q)2 = p2 – 2pq + q2 +
p2 – q2 + p2 + 2pq + q2 = 3p2
+ q2, which is an ellipse without the 45° slant.
No comments:
Post a Comment