3)
Multiples
of some numbers follow patterns in the table of x2 + xy + y2
Multiples of
numbers follow certain patterns. Multiples
of 2 only occur if x and y are also multiples of 2.
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
111
|
2
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
103
|
124
|
3
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
97
|
117
|
139
|
4
|
21
|
28
|
37
|
48
|
61
|
76
|
93
|
112
|
133
|
156
|
5
|
31
|
39
|
49
|
61
|
75
|
91
|
109
|
129
|
151
|
175
|
6
|
43
|
52
|
63
|
76
|
91
|
108
|
127
|
148
|
171
|
196
|
7
|
57
|
67
|
79
|
93
|
109
|
127
|
147
|
169
|
193
|
219
|
8
|
73
|
84
|
97
|
112
|
129
|
148
|
169
|
192
|
217
|
244
|
9
|
91
|
103
|
117
|
133
|
151
|
171
|
193
|
217
|
243
|
271
|
10
|
111
|
124
|
139
|
156
|
175
|
196
|
219
|
244
|
271
|
300
|
Multiples of
three are arranged in diagonals on the table, which means that if x – y is a
multiple of 3, then x2 + xy + y2 is also a multiple of 3.
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
111
|
2
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
103
|
124
|
3
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
97
|
117
|
139
|
4
|
21
|
28
|
37
|
48
|
61
|
76
|
93
|
112
|
133
|
156
|
5
|
31
|
39
|
49
|
61
|
75
|
91
|
109
|
129
|
151
|
175
|
6
|
43
|
52
|
63
|
76
|
91
|
108
|
127
|
148
|
171
|
196
|
7
|
57
|
67
|
79
|
93
|
109
|
127
|
147
|
169
|
193
|
219
|
8
|
73
|
84
|
97
|
112
|
129
|
148
|
169
|
192
|
217
|
244
|
9
|
91
|
103
|
117
|
133
|
151
|
171
|
193
|
217
|
243
|
271
|
10
|
111
|
124
|
139
|
156
|
175
|
196
|
219
|
244
|
271
|
300
|
This is
because x2 + xy + y2 = (x – y)2 + 3xy. If x – y is a multiple of 3, then adding 3xy
(another multiple of 3) would result in an answer that is also a multiple of 3.
Like 2, multiples
of 5 only occur if x and y are also multiples of 5.
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
111
|
2
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
103
|
124
|
3
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
97
|
117
|
139
|
4
|
21
|
28
|
37
|
48
|
61
|
76
|
93
|
112
|
133
|
156
|
5
|
31
|
39
|
49
|
61
|
75
|
91
|
109
|
129
|
151
|
175
|
6
|
43
|
52
|
63
|
76
|
91
|
108
|
127
|
148
|
171
|
196
|
7
|
57
|
67
|
79
|
93
|
109
|
127
|
147
|
169
|
193
|
219
|
8
|
73
|
84
|
97
|
112
|
129
|
148
|
169
|
192
|
217
|
244
|
9
|
91
|
103
|
117
|
133
|
151
|
171
|
193
|
217
|
243
|
271
|
10
|
111
|
124
|
139
|
156
|
175
|
196
|
219
|
244
|
271
|
300
|
In fact, it appears that any multiple of a number in the form of 3n + 2 (where n is an integer) only occur if x and y are also a multiple of 3n + 2. (In other words, 2, 5, 8, 11, etc.)
Multiples of
7 do not follow such a nice pattern, but the pattern repeats for every 7 rows
and 7 columns (so if (1, 2) is a multiple of 7, then so is (1, 2 + 7) = (1,
9)).
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
|
1
|
3
|
7
|
13
|
21
|
31
|
43
|
57
|
73
|
91
|
111
|
2
|
7
|
12
|
19
|
28
|
39
|
52
|
67
|
84
|
103
|
124
|
3
|
13
|
19
|
27
|
37
|
49
|
63
|
79
|
97
|
117
|
139
|
4
|
21
|
28
|
37
|
48
|
61
|
76
|
93
|
112
|
133
|
156
|
5
|
31
|
39
|
49
|
61
|
75
|
91
|
109
|
129
|
151
|
175
|
6
|
43
|
52
|
63
|
76
|
91
|
108
|
127
|
148
|
171
|
196
|
7
|
57
|
67
|
79
|
93
|
109
|
127
|
147
|
169
|
193
|
219
|
8
|
73
|
84
|
97
|
112
|
129
|
148
|
169
|
192
|
217
|
244
|
9
|
91
|
103
|
117
|
133
|
151
|
171
|
193
|
217
|
243
|
271
|
10
|
111
|
124
|
139
|
156
|
175
|
196
|
219
|
244
|
271
|
300
|
No comments:
Post a Comment