Wednesday, October 29, 2014

The Function x^2 + xy + y^2 – Part 3

3)      Multiples of some numbers follow patterns in the table of x2 + xy + y2

Multiples of numbers follow certain patterns.  Multiples of 2 only occur if x and y are also multiples of 2.

1
2
3
4
5
6
7
8
9
10
1
3
7
13
21
31
43
57
73
91
111
2
7
12
19
28
39
52
67
84
103
124
3
13
19
27
37
49
63
79
97
117
139
4
21
28
37
48
61
76
93
112
133
156
5
31
39
49
61
75
91
109
129
151
175
6
43
52
63
76
91
108
127
148
171
196
7
57
67
79
93
109
127
147
169
193
219
8
73
84
97
112
129
148
169
192
217
244
9
91
103
117
133
151
171
193
217
243
271
10
111
124
139
156
175
196
219
244
271
300

Multiples of three are arranged in diagonals on the table, which means that if x – y is a multiple of 3, then x2 + xy + y2 is also a multiple of 3.

1
2
3
4
5
6
7
8
9
10
1
3
7
13
21
31
43
57
73
91
111
2
7
12
19
28
39
52
67
84
103
124
3
13
19
27
37
49
63
79
97
117
139
4
21
28
37
48
61
76
93
112
133
156
5
31
39
49
61
75
91
109
129
151
175
6
43
52
63
76
91
108
127
148
171
196
7
57
67
79
93
109
127
147
169
193
219
8
73
84
97
112
129
148
169
192
217
244
9
91
103
117
133
151
171
193
217
243
271
10
111
124
139
156
175
196
219
244
271
300
This is because x2 + xy + y2 = (x – y)2 + 3xy.  If x – y is a multiple of 3, then adding 3xy (another multiple of 3) would result in an answer that is also a multiple of 3.

Like 2, multiples of 5 only occur if x and y are also multiples of 5.

1
2
3
4
5
6
7
8
9
10
1
3
7
13
21
31
43
57
73
91
111
2
7
12
19
28
39
52
67
84
103
124
3
13
19
27
37
49
63
79
97
117
139
4
21
28
37
48
61
76
93
112
133
156
5
31
39
49
61
75
91
109
129
151
175
6
43
52
63
76
91
108
127
148
171
196
7
57
67
79
93
109
127
147
169
193
219
8
73
84
97
112
129
148
169
192
217
244
9
91
103
117
133
151
171
193
217
243
271
10
111
124
139
156
175
196
219
244
271
300

In fact, it appears that any multiple of a number in the form of 3n + 2 (where n is an integer) only occur if x and y are also a multiple of 3n + 2.  (In other words, 2, 5, 8, 11, etc.)

Multiples of 7 do not follow such a nice pattern, but the pattern repeats for every 7 rows and 7 columns (so if (1, 2) is a multiple of 7, then so is (1, 2 + 7) = (1, 9)).

1
2
3
4
5
6
7
8
9
10
1
3
7
13
21
31
43
57
73
91
111
2
7
12
19
28
39
52
67
84
103
124
3
13
19
27
37
49
63
79
97
117
139
4
21
28
37
48
61
76
93
112
133
156
5
31
39
49
61
75
91
109
129
151
175
6
43
52
63
76
91
108
127
148
171
196
7
57
67
79
93
109
127
147
169
193
219
8
73
84
97
112
129
148
169
192
217
244
9
91
103
117
133
151
171
193
217
243
271
10
111
124
139
156
175
196
219
244
271
300

No comments:

Post a Comment