Tuesday, November 4, 2014

The Function x^2 + xy + y^2 – Part 9

9)      The product of two numbers in the form of x2 + xy + y2 is another number in the form of x2 + xy + y2, making x2 + xy + y2 closed in multiplication.

The product of two numbers in the form of x2 + xy + y2 is another number in the form of x2 + xy + y2.  For example, (1, 2) ∙ (1, 4) = (7, 7) because (1, 2) = 12 + 1∙2 + 22 = 7 and (1, 4) = 12 + 1∙4 + 42 = 21 and (7, 7) = 72 + 7∙7 + 72 = 147, and 7 ∙ 21 = 147.

1
2
3
4
5
6
7
8
9
10
1
3
7
13
21
31
43
57
73
91
111
2
7
12
19
28
39
52
67
84
103
124
3
13
19
27
37
49
63
79
97
117
139
4
21
28
37
48
61
76
93
112
133
156
5
31
39
49
61
75
91
109
129
151
175
6
43
52
63
76
91
108
127
148
171
196
7
57
67
79
93
109
127
147
169
193
219
8
73
84
97
112
129
148
169
192
217
244
9
91
103
117
133
151
171
193
217
243
271
10
111
124
139
156
175
196
219
244
271
300

We can arrive at a general format for this by looking at (a, b) ∙ (c, d) = (e, f) and finding values for e and f in terms of a, b, c, and d.  We know that (a, b) ∙ (c, d) = (a2 + ab + b2)(c2 + cd + d2) = a2c2 + a2cd + a2d2 + abc2 + abcd + abd2 + b2c2 + b2cd + b2d2 = e2 + ef + f2.  If e and f are in terms of a, b, c, and d, it is likely that each term has a degree of 2 so that e2, ef, and f2 combine to make all terms with a degree of 4.  Also, it is likely that there is no a2 term in e and f because there is no a4 term in a2c2 + a2cd + a2d2 + abc2 + abcd + abd2 + b2c2 + b2cd + b2d2.  (If there were, say e = (ma2 + …) and f = (na2 + …) then e2 + ef + f2 = (ma2 + …)2 + (ma2 + …)(na2 + …) + (na2 + …)2 = m2a4 + mna4 + n2a4 + …. = (m2 + mn + n2)a4 + … = (0a4 + …), which means m2 + mn + n2 = 0.  But if m and n are integers, which is also likely, then m = 0 and n = 0, which means there is no a2 term in e or f.)  The same argument can be made for no b2, c2, d2, ab, or cd term.  (It’s not necessarily true, but if it works it will cut the work down in half.)  So we can let e = m1ac + m2ad + m3bc + m4bd and f = n1ac + n2ad + n3bc + n4bd, which means e2 + ef + f2 = (m1ac + m2ad + m3bc + m4bd)2 + (m1ac + m2ad + m3bc + m4bd)(n1ac + n2ad + n3bc + n4bd) + (n1ac + n2ad + n3bc + n4bd)2.  Using charts to help multiply:


a2
ab
b2

c2
a2c2
abc2
b2d2

cd
a2cd
abcd
b2cd
=
d2
a2d2
abd2
b2d2




m1ac
m2ad
m3bc
m4bd


m1ac
m12a2c2
m1m2a2cd
m1m3abc2
m1m4abcd


m2ad
m1m2a2cd
m22a2d2
m2m3abcd
m2m4abd2
+

m3bc
m1m3abc2
m2m3abcd
m32b2c2
m3m4b2cd


m4bd
m1m4abcd
m2m4abd2
m3m4b2cd
m42b2d2




m1ac
m2ad
m3bc
m4bd


n1ac
m1n1a2c2
m2n1a2cd
m3n1abc2
m4n1abcd


n2ad
m1n2a2cd
m2n2a2d2
m3n2abcd
m4n2abd2
+

n3bc
m1n3abc2
m2n3abcd
m3n3b2c2
m4n3b2cd


n4bd
m1n4abcd
m2n4abd2
m3n4b2cd
m4n4b2d2




n1ac
n2ad
n3bc
n4bd

n1ac
n12a2c2
n1n2a2cd
n1n3abc2
n1n4abcd

n2ad
n1n2a2cd
n22a2d2
n2n3abcd
n2n4abd2

n3bc
n1n3abc2
n2n3abcd
n32b2c2
n3n4b2cd

n4bd
n1n4abcd
n2n4abd2
n3n4b2cd
n42b2d2

This gives us 9 new formulas:
for the a2c2 term: 1 = m12 + m1n1 + n12
for the a2d2 term: 1 = m22 + m2n2 + n22
for the b2c2 term: 1 = m32 + m3n3 + n32
for the b2d2 term: 1 = m42 + m4n4 + n42
for the abc2 term: 1 = 2m1m3 + m3n1 + m1n3 + 2n1n3
for the a2cd term: 1 = 2m1m2 + m2n1 + m1n2 + 2n1n2
for the b2cd term: 1 = 2m3m4 + m3n4 + m4n3 + 2n3n4
for the abd2 term: 1 = 2m2m4 + m2n4 + m4n2 + 2n2n4
for the abcd term: 1 = 2m1m4 + 2m2m3 + m1n4 + m2n3 + m3n2 + m4n1 + 2n1n4 + 2n2n3

There are 6 possible integer answers for the a2c2 formula 1 = m12 + m1n1 + n12 which are (m1, n1) = (0, 1), (1, 0), (0, -1), (-1, 0), (1, -1), or (-1, 1).  Since these are all related, we can choose one for now and derive the others based on the equality formulas from Point #7.  So let’s choose (m1, n1) = (0, 1). 

Using the abc2 term formula 1 = 2m1m3 + m3n1 + m1n3 + 2n1n3, 1 = 2(0)m3 + m3(1) + (0)n3 + 2(1)n3 or 1 = m3 + 2n3.  But since in the b2c2 term formula 1 = m32 + m3n3 + n32 which means (m3, n3) = (0, 1), (1, 0), (0, -1), (-1, 0), (1, -1), or (-1, 1), the only two that work in 1 = m3 + 2n3 are (m3, n3) = (1, 0) or (-1, 1).  Again, these are all related, so we can choose (m3, n3) = (1, 0) and derive the other based on the equality formulas from Point #7.  So if (m3, n3) = (1, 0), then using the b2cd term formula 1 = 2m3m4 + m3n4 + m4n3 + 2n3n4, 1 = 2(1)m4 + (1)n4 + m4(0) + 2(0)n4 or 1 = 2m4 + n4.  But since in the b2d2 term formula 1 = m42 + m4n4 + n42 which means (m4, n4) = (0, 1), (1, 0), (0, -1), (-1, 0), (1, -1), or (-1, 1), the only two that work in 1 = 2m4 + n4 are (m4, n4) = (0, 1) or (1, -1). 

Similarly, if (m1, n1) = (0, 1), using the a2cd term formula and the a2d2 term formula, (m2, n2) = (1, 0) or (-1, 1) and using the abd2 term formula if (m2, n2) = (1, 0) then (m4, n4) = (0, 1) or (1, -1). 

Finally using the abcd term formula, 1 = 2m1m4 + 2m2m3 + m1n4 + m2n3 + m3n2 + m4n1 + 2n1n4 + 2n2n3, 1 = 2(0)m4 + 2(1)(1) + (0)n4 + (1)(0) + (1)(0) + m4(1) + 2(1)n4 + 2(0)(0) or 1 = 2 + m4 + 2n4.  Then (m4, n4) = (0, 1) is not a solution but (m4, n4) = (1, -1) is.

This means that one solution for (m1, m2, m3, m4, n1, n2, n3, n4) is (0, 1, 1, 1, 1, 0, 0, -1), which means that one solution for (e, f) is (ad + bc + bd, ac – bd).  We can test this with our original example of (1, 2) ∙ (1, 4) = (7, 7), because if a = 1, b = 2, c = 1, and d = 4, then e = ad + bc + bd = 1∙4 + 2∙1 + 2∙4 = 14 and f = ac – bd = 1∙1 – 2∙4 = -7, and (14, -7) = (7, 7) using the equivalency statement (x, y) = (-y, x + y) in Point #7.  In fact, we can use the equivalence statements on a and b, c and d, and e and f and arrive at 24 possible solutions for e and f:

1)      (a, b) ∙ (c, d) = (e, f) = (ad + bc + bd, ac – bd)
2)      (a, b) ∙ (c, d) = (e, f) = (ad + bc + bd, -ac – ad – bc)
3)      (a, b) ∙ (c, d) = (e, f) = (ac – bd, -ac – ad – bc)
4)      (a, b) ∙ (c, d) = (e, f) = (ac – bd, ad + bc + bd)
5)      (a, b) ∙ (c, d) = (e, f) = (-ac – ad – bc, ad + bc + bd)
6)      (a, b) ∙ (c, d) = (e, f) = (-ac – ad – bc, ac – bd)
7)      (a, b) ∙ (c, d) = (e, f) = (-ad – bc – bd, -ac + bd)
8)      (a, b) ∙ (c, d) = (e, f) = (-ad – bc – bd, ac + ad + bc)
9)      (a, b) ∙ (c, d) = (e, f) = (-ac + bd, ac + ad + bc)
10)   (a, b) ∙ (c, d) = (e, f) = (-ac + bd, -ad – bc – bd)
11)   (a, b) ∙ (c, d) = (e, f) = (ac + ad + bc, -ad – bc – bd)
12)   (a, b) ∙ (c, d) = (e, f) = (ac + ad + bc, -ac + bd)
13)   (a, b) ∙ (c, d) = (e, f) = (ac + bd + bc, ad – bc)
14)   (a, b) ∙ (c, d) = (e, f) = (ac + bd + bc, -ad – ac – bd)
15)   (a, b) ∙ (c, d) = (e, f) = (ad – bc, -ad – ac – bd)
16)   (a, b) ∙ (c, d) = (e, f) = (ad – bc, ac + bd + bc)
17)   (a, b) ∙ (c, d) = (e, f) = (-ad – ac – bd, ac + bd + bc)
18)   (a, b) ∙ (c, d) = (e, f) = (-ad – ac – bd, ad – bc)
19)   (a, b) ∙ (c, d) = (e, f) = (-ac – bd – bc, -ad + bc)
20)   (a, b) ∙ (c, d) = (e, f) = (-ac – bd – bc, ad + ac + bd)
21)   (a, b) ∙ (c, d) = (e, f) = (-ad + bc, ad + ac + bd)
22)   (a, b) ∙ (c, d) = (e, f) = (-ad + bc, -ac – bd – bc)
23)   (a, b) ∙ (c, d) = (e, f) = (ad + ac + bd, -ac – bd – bc)
24)   (a, b) ∙ (c, d) = (e, f) = (ad + ac + bd, -ad + bc)

In fact, we can use the same argument to prove that the product of two numbers in the form of x2 + kxy + y2 is another number in the form of x2 + kxy + y2 for any integer of k, making x2 + kxy + y2 closed in multiplication.  It turns out that (a, b) ∙ (c, d) = (e, f) = (ad + bc + kbd, ac – bd), along with 23 other solutions. The function x2 + xy + y2 is just a special case for when k = 1.

No comments:

Post a Comment