Morley’s
Miracle states that the trisectors of each angle of any triangle meet in three
new points that form a new triangle that is always an equilateral triangle.
Proof:
sin(⅓C) / c1 = sin(∠AEC)
/ b
|
(law of sines on ∆AEC)
|
∠AEC + ⅓A + ⅓C = 180°
|
(angle sum of ∆AEC)
|
∠AEC = 180° – (⅓A + ⅓C)
|
(subtract)
|
sin(⅓C) / c1 = sin(180° – (⅓A + ⅓C)) / b
|
(substitute)
|
sin(⅓C) / c1 = sin(⅓A + ⅓C) / b
|
(sin(180° – x) = sin x)
|
c1 = b sin(⅓C) / sin(⅓A + ⅓C)
|
(rearrange)
|
A + B + C = 180°
|
(angle sum of ∆ABC)
|
⅓A + ⅓B + ⅓C = 60°
|
(divide by 3)
|
⅓A + ⅓C = 60° – ⅓B
|
(subtract)
|
c1 = b sin(⅓C) / sin(60° – ⅓B)
|
(substitute)
|
c1 = 4b sin(⅓B) sin(⅓C) sin(60° + ⅓B) /
(4 sin(⅓B) sin(60° – ⅓B) sin(60° + ⅓B)) |
(multiply num and denom by 4 sin (⅓B) sin(60° + ⅓B))
|
c1 = 4b sin(⅓B) sin(⅓C) sin(60° + ⅓B) / d
|
(let d be the denon)
|
d = 4 sin(⅓B) sin(60° – ⅓B)
sin(60° + ⅓B)
|
(d value)
|
d = 4 sin(⅓B)
(sin(60°)cos(⅓B) – cos(60°)sin(⅓B)) (sin(60°)cos(⅓B) + cos (60°)sin(⅓B))
|
(sine addition and subtraction)
|
d = 4 sin(⅓B) (√3/2cos(⅓B)
– ½sin(⅓B)) (√3/2cos(⅓B) – ½sin(⅓B))
|
(sine and cosine values)
|
d = 4 sin(⅓B) (¾cos2(⅓B)
– ¼sin2(⅓B))
|
(difference of squares)
|
d = 3 sin(⅓B) cos2(⅓B)
– sin3(⅓B)
|
(distribute 4 sin(⅓B))
|
d = sin(⅓B) cos2(⅓B)
– sin3(⅓B) + 2 sin(⅓B) cos2(⅓B)
|
(rearrange)
|
d = sin(⅓B)(cos2(⅓B)
– sin2(⅓B)) + 2sin(⅓B)cos(⅓B)cos(⅓B)
|
(factor out sin(⅓B))
|
d = sin(⅓B)(cos(⅓B)cos(⅓B) –
sin(⅓B)sin(⅓B)) + (sin(⅓B)cos(⅓B) + sin(⅓B)cos(⅓B))cos(⅓B))
|
(rearrange)
|
d = sin(⅓B)cos(⅓B + ⅓B) +
sin(⅓B + ⅓B)cos(⅓B))
|
(sine addition)
|
d = sin(⅓B)cos(2(⅓B)) +
sin(2(⅓B))cos(⅓B))
|
(addition)
|
d = sin(⅓B + 2(⅓B))
|
(sine addition)
|
d = sin(3(⅓B))
|
(addition)
|
d = sin(B)
|
(multiply)
|
c1 = 4b sin(⅓B) sin(⅓C) sin(60° + ⅓B) / sin(B)
|
(substitute)
|
c1 = (4b/sin(B)) sin(⅓B) sin(⅓C) sin(60° + ⅓B)
|
(rearrange)
|
K = ½ ac sin B
|
(area of ∆ABC)
|
4bK = 2 abc sin B
|
(multiply by 4b)
|
4b/sin B = 2abc/K
|
(divide by K sin B)
|
c1 = (2abc/K) sin(⅓B) sin(⅓C) sin(60° + ⅓B)
|
(substitute)
|
b3 = (2acb/K) sin(⅓C) sin(⅓B) sin(60° + ⅓C).
|
(similar argument to c1)
|
Let P = (2abc/K) sin(⅓B) sin(⅓C)
|
(P value assignment)
|
Let Q = 60° + ⅓B
|
(Q value assignment)
|
Let R = 60° + ⅓C
|
(R value assignment)
|
c1 = P sin Q
|
(substitution)
|
b3 = P sin R
|
(substitution)
|
a22 = b32 + c12
– 2b3c1cos(⅓A)
|
(law of cosines on ∆AEF)
|
a22 = (P sin R)2 + (P sin Q)2
– 2(P sin R)(P sin Q)cos(⅓A) |
(substitution)
|
a22 = P2 sin2R + P2 sin2Q
– 2 P2 sin R sin Q cos (⅓A) |
(square)
|
a22 = P2(sin2R + sin2Q
– 2 sin R sin Q cos (⅓A))
|
(factor P2)
|
A + B + C = 180°
|
(angle sum of ∆ABC)
|
⅓A + ⅓B + ⅓C = 60°
|
(divide by 3)
|
⅓A + ⅓B + ⅓C + 60° + 60° =
60° + 60° + 60°
|
(add 60° and 60°)
|
⅓A + (60° + ⅓B) + (60° + ⅓C)
= 180°
|
(rearrange)
|
⅓A + Q + R = 180°
|
(substitution)
|
⅓A = 180° – (Q + R)
|
(subtract (Q + R))
|
a22 = P2(sin2R + sin2Q
– 2 sin R sin Q cos (180° – (Q + R))) |
(substitution)
|
a22 = P2(sin2R + sin2Q
+ 2 sin R sin Q cos (Q + R)) |
(cos(180° – x) = -cos x)
|
a22 = P2(sin2R + sin2Q
+ 2 sin R sin Q
(cos Q cos R – sin Q sin R)) |
(cosine addition)
|
a22 = P2(sin2R + sin2Q
+ 2 sin R sin Q cos Q cos R – 2 sin2R sin2Q) |
(distribute)
|
a22 = P2(sin2R – sin2R
sin2Q + sin2Q
– sin2R sin2Q + 2 sin R sin Q cos Q cos R) |
(rearrange)
|
a22 = P2(sin2R(1 – sin2Q)
+ sin2Q(1 – sin2R)
+ 2 sin R sin Q cos Q cos R) |
(factor)
|
a22 = P2(sin2R cos2Q
+ sin2Q cos2R
+ 2 sin R sin Q cos Q cos R) |
(1 – sin2Q = cos2Q)
|
a22 = P2(sin2R cos2Q
+ 2 sin R sin Q cos Q cos R + sin2Q cos2R)
|
(rearrange)
|
a22 = P2(sin R cos Q + sin Q cos R)2
|
(factor)
|
a22 = P2(sin(R + Q))2
|
(sine addition)
|
a22 = P2(sin(180° – (R + Q)))2
|
(sin(180° – x) = sin x)
|
a22 = P2(sin(⅓A))2
|
(substitution)
|
a2 = P sin(⅓A)
|
(square root)
|
a2 = ((2abc/K) sin(⅓B) sin(⅓C)) sin(⅓A)
|
(substitution)
|
a2 = (2abc/K) sin(⅓A) sin(⅓B) sin(⅓C)
|
(rearrange)
|
b2 = (2bca/K) sin(⅓B) sin(⅓C) sin(⅓A)
|
(similar argument to a2)
|
c2 = (2cab/K) sin(⅓C) sin(⅓A) sin(⅓B)
|
(similar argument to a2)
|
b2 = (2abc/K) sin(⅓A) sin(⅓B) sin(⅓C)
|
(rearrange)
|
c2 = (2abc/K) sin(⅓A) sin(⅓B) sin(⅓C)
|
(rearrange)
|
a2 = b2 = c2 = (2abc/K) sin(⅓A)
sin(⅓B) sin(⅓C)
|
(substitution)
|
∆DEF is equilateral
|
(a2, b2, and c2 are congruent)
|
Q.E.D.
No comments:
Post a Comment